Operational Laws
Operational laws

- Operational laws are relationships that apply to certain measurable parameters in a computer system.
- They are independent of the distribution of arrival times or service rates.
- The parameters are observed for a finite time T_i, yielding operational quantities:
 - Number of arrivals A_i
 - Number of completions C_i
 - Busy time B_i
Job flow balance

• The job flow balance assumption implies:
 • Number of arrivals A_i (jobs arriving during T_i)
 • Number of completions C_i (jobs completed during T_i)

 \[A_i = C_i \]

• Correct use heavily depends on semantics of “jobs completed”
Derivations

• Arrival rate $\lambda_i = A_i / T_i$
• Throughput $X_i = C_i / T_i$
• Utilization $U_i = B_i / T_i$
• Mean Service Time $S_i = B_i / C_i$
• These are variables that change from observational period to observational period
• Some relationships hold for each observational period
Utilization Law

\[U_i = \frac{B_i}{T_i} = \frac{C_i}{T_i} \times \frac{B_i}{C_i} = X_i \cdot S_i \]

The utilization law is simply based on the observation that the service time indicates how long the server needs to complete a job. Hence, the utilization of the server is the number of jobs completed multiplied the time that it takes to complete each one of them.
Example Utilization Law

• A disk serves 40 requests per second. Each request requires 0.0225 seconds
• Utilization: 40 x 0.0225 = 90%

• Instrumentation shows that a disk is busy 80% of the time when an application runs. We know that the application produces 20 requests per second
• The time taken per request is 40 ms
Forced Flow Law

- Assume a closed system several devices are connected as a queuing network. The number of completed jobs is C_0
- Assume job flow balance
- If each job makes V_i (visit ratio) requests of the i_{th} device, then $C_i = C_0 V_i$

$$X_i = \frac{C_i}{T_i} = \frac{C_i}{C_0} \times \frac{C_0}{T_i} = XV_i$$
Bottleneck device

• Utilization of the device

$$U_i = X_i S_i = X V_i S_i$$

With the demand for the device

$$D_i = V_i S_i$$

$$U_i = X D_i$$

The device with the highest demand is the bottleneck device
Little’s Law

- Assuming job flow balance:
- R_i is the response time of the device
- Q_i is the number of jobs in the device
- $\lambda_i = X_i$ (arrival rate equals throughput)

\[Q_i = \lambda_i R_i = X_i R_i \]
Interactive Response Time Law

- Users submit a request, when they get a response, they think for a time Z, and submit the next request.
Interactive, closed systems

- Response time R
- Total cycle time $R + Z$
- Each user generates $T/(R+Z)$ requests in time T
- There are N users

$$X = \frac{Jobs}{Time} = \frac{N}{R+Z} \frac{T}{T} = \frac{N}{R+Z}$$

$$R = \frac{N}{X} - Z$$
Interactive Law in practice
Interactive law in practice
Interactive law in practice
Warning!

- Real systems are not ideal
 - Network effects
 - Processing overhead (not only wait)
 - Exceptions and not “normal” return values
A queue

- Very useful model for many computer systems
- Basic principles of queuing theory
- Understand the limitations of queues as models
Queuing system
Characterizing a queuing system

- Arrival rate
- Service time
- Service discipline
- System capacity
- Number of servers
- Population size

- \(A/S/m/C/P/SD \)
 - \(A \) = arrival distribution
 - \(S \) = service distribution
 - \(m \) = number of servers
 - \(C \) = buffer capacity
 - \(P \) = population size (input)
 - \(SD \) = service discipline

- Notation not standardized
ARRIVAL RATE DISTRIBUTION
The interarrival times are assumed to form a sequence of Independent and Identically Distributed (IID) random variables. Common assumption is a Poisson distribution.
Mean arrival rate

• Mean interarrival time = $E[\tau]$
• Mean arrival rate: $\lambda = 1 / E[\tau]$
• λ is not a random variable!
• Examples;
 – a single client submits a query every 200 ms, then λ is 5 queries/second
 – 10 clients submit a query each every 500 ms, then λ is 20 queries/second
 – These are the queries submitted to the system
Assumptions

• Queuing systems assume an arrival rate
 – state independent (does not depend on number of previous jobs)
 – stationary (does not change in time)

• These assumptions do not hold in real systems
 – Burstiness / batch jobs
 – Flash crowds (popularity)
 – Social effects (time of day variant load)
SERVICE RATE DISTRIBUTION
Service time per job

- The time it takes to process a job (only the time it takes to process it, not including the time it has been waiting in the queue) = \(s \)
- Mean service rate: \(\mu = 1/E[s] \)
- If there are \(m \) servers, mean service rate is \(m\mu \)
- \(\mu \) is not a random variable!
- Example:
 - Printer takes on average 20 seconds per job, then \(\mu = 0.05 \) jobs/second = 3 jobs/minute
Throughput

• Sometimes \(\mu \) is called the system’s throughput
• Careful with the notion of throughput
• This is correct only in some cases
 – There are always jobs ready when a job is finished
 – No overhead in switching to new job
 – All jobs complete correctly
 – Service rate is state independent (does not depend on the number of jobs in the queue)
 – Service rate is stationary (does not change with time)
Queue discipline

- **FCFS = First Come – First Served**
 - Ordered queue
- **LCFS = Last Come – First Served**
 - Stack
- **RR = Round Robin**
 - CPU allocation to processes
- **RSS = random**
- **Priority Based**
OTHER PARAMETERS
System capacity

• The system (or buffer) capacity is the maximum number of jobs that can be waiting for service
• System capacity includes jobs waiting and jobs receiving service
• In reality = finite
• Analysis = assume infinite capacity
• Finite buffers very important in practice
Number of Servers

- The service can be provided by one or more servers
- Assume work in parallel and independent
- Servers do not interfere with each other
- Total service rate is aggregation of each individual service rate
Population

• The total number of potential jobs that can be submitted to the system:
• Analysis = assume infinite
• In practice:
 – Very large (assume infinite), e.g., number of clicks on a page
 – Finite, number of homework submissions for this lecture
 – Closed systems (output determines input)
GENERAL RESULTS

G/G/1 G/G/m
Offered load

• The offered load or traffic intensity is
 \[\rho = \frac{\lambda}{m\mu} = \lambda \cdot \frac{E[s]}{m} \]

• The system is stable if
 \[\rho < 1 \Rightarrow \lambda < m\mu \]

• In other words, the system is stable if the mean arrival rate (\(\lambda\)) is less than the mean service rate (\(m\mu\)), otherwise the queue grows without bounds
\[\rho = 1 \]

- Unless arrivals and service are deterministic and exactly scheduled, \(\rho = 1 \) does not lead to a steady system
 - Randomness prevents queuing from emptying
 - Server cannot catch up
 - Queue grows without bound
- One way to avoid this is **flow control** (drop jobs when load to high)
Examples

Instrumentation shows that a disk is serving 50 I/O operations per second and the average I/O time is 10 ms. What is the disk utilization?

\[\rho = \lambda \cdot E[s]/m, \text{ with } m = 1 \]

\[\rho = 50 \times 0.010 = 0.5 = 50\% \]

Application A generates about 50 I/O requests/s, if the disk is 85 % utilized, what is the average time needed for every I/O? ... 17 ms
Further examples

We have allocated 60\% of the disk to one application. If we want to maintain an average response time for every I/O operations of 12 ms, what is the maximum number of I/O requests per second that the application can generate?

\[0.6 = \lambda \cdot 12 \text{ ms} \Rightarrow \lambda = 50 \text{ req/s} \]
Some more notation

- $n = n_s + n_q$, where
 - n is the number of jobs in the system (queue)
 - n_s is the number of job in the service
 - n_q is the number of jobs waiting for service

- $w = w_q + s$, where
 - w is the total time in the system
 - w_q is the time waiting in the queue
 - s is the time in the service

- These are all random variables
Little’s Law

• For the queuing system:
 \[E[n] = \lambda \cdot E[w] \]

• For the queue
 \[E[n_q] = \lambda \cdot E[w_q] \]

• With
 \[E[n] = E[n_q] + E[n_s] \]
 \[E[w] = E[w_q] + E[s] = E[w_q] + 1/\mu \]
Example

Instrumentation shows that the average time to respond to a request was 100 ms and the server received about 100 requests/second. If each active request requires 5 KB of memory, how much memory needs to be reserved for the average number of requests in the system?

Jobs in the system = 100 \cdot 0.1 = 10 \text{ jobs} \quad (\text{Little’s})

Memory needed = 10 \cdot 5 \text{ KB} = 50 \text{ KB}
Jobs in service

• Using Little’s Law, one can derive:
 \[E[n_s] = \frac{\lambda}{\mu} = \lambda \cdot E[s] \]

• For a queuing system with \(m \) servers
 \[E[n_s] = m \cdot \rho \]

that is, the average number of jobs in service is \(m \) times the arrival rate divided by the mean service rate
BIRTH-DEATH PROCESSES
Stochastic processes

• Many of the values in a queuing system are random variables function of time (e.g., the waiting time at a queue)
• Such random functions of times are called stochastic processes
• If the values a process can take are finite or countable, it is a discrete process or a stochastic chain
Markov Processes

• If the future states of a process depend only of the current state and not on past states, the process is a Markov process
• Discrete Markov processes are Markov chains
• A Markov chain in which the transition between states is limited to neighboring states is called a birth-death process
Steady state probability

- Probability of being in state \(n \) is:

\[
p_n = \frac{\lambda_0 \lambda_1 \ldots \lambda_{n-1}}{\mu_1 \mu_2 \ldots \mu_n} \ p_0
\]
M/M/1
M/M/1

- Memoryless distribution for arrival and service
- Single server
- Infinite buffers and FCFS
- Mean arrival rate: λ
- Mean service rate: μ
Basics M/M/1

• From the state probability of a birth-death process:
 \[p_n = \left(\frac{\lambda}{\mu} \right)^n p_0, \quad n = 1, 2, \ldots, \infty \]

• or
 \[p_n = \rho^n p_0 \]

• Since all probabilities must add to 1
 \[p_0 = 1 - \rho \quad \text{and} \quad p_n = (1 - \rho) \rho^n \]
Utilization

- Utilization: probability that there is one or more jobs in the system

\[U = 1 - p_0 = \rho \]
M/M/1 behavior

• The mean number of jobs $E[n]$ is

$$E[n] = \sum_{n=1}^{\infty} n \cdot p^n = \sum_{n=1}^{\infty} n(1-\rho)\rho^n = \frac{\rho}{1-\rho}$$

• Applying Little’s Law we get the response time

$$E[w] = \frac{1/\mu}{1-\rho}$$
Response time in M/M/1

RESPONSE TIME

Utilization

1.0
M/M/m and M/M/m/m/B
• Each server serves μ jobs per unit of time
• Jobs get service right away if less than m jobs in system, otherwise they wait in queue.
Probabilities in M/M/m

- Number of jobs in a M/M/m system is a birth death process. Hence:

\[
p_n = \frac{\lambda_0 \lambda_1 \ldots \lambda_{n-1}}{\mu_1 \mu_2 \ldots \mu_n} p_0
\]
Resolving for M/M/m

$$p_n = \frac{\lambda^n}{n! \mu^n} p_0 \quad \text{for } n = 0, 1, 2, \ldots m-1$$

$$p_n = \frac{\lambda^n}{m! m^{n-m} \mu^n} p_0 \quad \text{for } n = m, m+1, \ldots \infty$$
With traffic intensity

• \(\rho = \frac{\lambda}{m\mu} \)

\[
p_n = \frac{(m\rho)^n}{n!} \quad p_0 \text{ for } n = 0, 1, 2, \ldots, m-1
\]

\[
p_n = \frac{\rho^n m^m}{m!} \quad p_0 \text{ for } n = m, m+1, \ldots, \infty
\]
M/M/m queue

• The rest of the results for this system can be derived from the state probabilities (see in the textbook)
m times M/M/1 vs M/M/m

- What is better?
 - m queues of the form M/M/1 with arrival rate λ/m
 - a single system of the form M/M/m with arrival rate λ

- In general, M/M/m will be better because it leads to less waiting time (jobs waiting in a queue do not benefit if a server in another queue is free)
M/M/m/B

- The queuing system has limited buffer capacity. After B buffers are full, jobs are no longer admitted.
- State transition diagram is similar to that of M/M/m but it finishes with B (as opposed to having ∞ states).
- As before

 $$ p_n = \frac{\lambda_0 \lambda_1 \ldots \lambda_{n-1}}{\mu_1 \mu_2 \ldots \mu_n} p_0 $$
State probabilities

\[p_n = \frac{\lambda^n}{n! \mu^n} \quad p_0 = \frac{(m\rho)^n}{n!} \quad p_0 \]

for \(n < m \)

\[p_n = \frac{\lambda^n}{m! m^{n-m} \mu^n} \quad p_0 = \frac{\rho^m}{m!} \quad p_0 \]

for \(n = m, m+1, ..., B \)
M/M/m/B

- All the other parameters can be computed from these probabilities (see the textbook)

- Effective arrival rate:
 - Arrival rate λ
 - After B jobs, no more jobs enter the system
 - $\lambda' = \lambda (1-p_B)$ effective arrival rate
 - $\lambda - \lambda' = \lambda p_B$ packet loss rate

- Apply effective arrival rate to Little’s Law